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Purpose of the Study 
 

 This paper reports on research completed through the Algebra Teaching Study (ATS, 
http://gse3.berkeley.edu/research/ats), a larger study focused on developing tools for linking 
teaching practices in middle school algebra and students’ robust understanding necessary for 
solving complex contextual algebraic problems (Ayieko, Floden, Hu, Lepak, Reinholz, & 
Wernet, 2012). We hypothesize that analysis of classroom practices along a limited number of 
key dimensions should correlate with corresponding differences in the type of gains in 
competencies students display in their written work. We focus specifically on contextual word 
problems in algebra due to their central importance in the curriculum, the fact that they have 
been documented as a source of difficulty for students, and their potential for uncovering a wide 
variety of competencies (cf. Walkington, Sherman, & Petrosino, 2012). We call such 
mathematically rich word problems contextual algebraic tasks ([CATs], Ayieko, Floden, Hu, 
Lepak, Reinholz, & Wernet, 2012). 

In this paper we focus on one component of the larger study: operationalizing and 
measuring changes in student understanding. Our assessments build on algebraic tasks developed 
by the Mathematics Assessment Resource Service ([MARS], available at 
http://www.noycefdn.org/resources.php). While these tasks and scoring rubrics help teachers see 
strengths and weaknesses in student understanding, the scoring rubrics were not designed to link 
specific classroom practices to specific aspects of robust algebraic understanding. Thus, we 
designed rubrics focused on specific competencies required for robust understanding (i.e. 
robustness criteria) to capture particular competencies we hypothesized students might be 
developing and to compare profiles of developing student competencies at the class-level. This 
detailed analysis allows nuanced links to specific instructional practices as captured in the 
classroom observation scheme developed for the larger study. We address the following research 
questions:  

• How can robust algebraic understanding be analyzed through meaningful 
subcomponents, changes in which can be measured over the course of the school year? 

• What class profiles result from this detailed analysis, and what might they reveal about 
the opportunities to develop robust thinking in different classrooms? 

Theoretical Framing: Robustness Criteria 
 

 To answer the questions, “what would robust understanding of algebra necessary to solve 
contextual algebraic tasks (CATs, henceforth) look like, and how can we measure students 
development of this understanding?”, we first developed a set of five robustness criteria (RCs) 
for student understanding.  These RCs play a central role in our project by helping us navigate 
the dialectic relationship between classroom observations and task selection and analysis. 
Simultaneously, these criteria helped us focus on specific classroom practices that seemed likely 
to lead to this robust algebraic understanding. The RCs are defined and operationalized in 
assessments and the observation scheme as follows:  

RC1: Reading and interpreting text, and understanding the contexts described in 
problem statements. RC1 represents the extent to which students are able to understand 
problem situations.  Schoenfeld (2004) identified this as a core part of problem solving. In many 
ways RC1 corresponds to Mayer’s problem representation phase in which the solver “constructs 
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a mental representation of the situation described in the problem” (in Brenner et al., 1997, p. 
665).  

RC2: Identifying salient quantities in a problem and articulating relationships between 
them. One objective of the Algebra 1 Content Standards (NCTM, 2000) is for students to 
“identify essential quantitative relationships in a situation and determine the class or classes of 
functions that might model the relationship” (p. 665). Indeed, one conceptualization of algebra 
itself is as the study of relationships among quantities (Usiskin, 1988). Driscoll (1999) also 
identified building rules to represent functions—considering how variables are changing and 
how the input is related to output by well-defined rules—as an algebraic habit of mind. 

RC3A: Generating representations of relationships between quantities, and RC3B: 
Interpreting and making connections between representations. We have operationalized the 
important competencies of representing quantitative relationships into two subcriteria. 
Representations are a key part of creating a mathematical model of a given situation to solve a 
given word problem (cf. Schoenfeld, 2004), and in algebraic understanding more generally (cf. 
Chazan, 2000).  Consistent with this literature, we consider algebraic representations to include 
coordinate graphs, bivariate tables, diagrams or picture, and variable equations. By making 
connections between these various representations, students develop a deeper, more integrated 
understanding of algebra (e.g., Brenner et al., 1997; Driscoll, 1999; Kieran, 2007).  

RC4A: Executing calculations and procedures with precision, and RC4B: Checking 
plausibility of results. Solving complex algebraic problems typically involves a number of 
procedures and calculations, which students must be able to execute accurately. Once students 
arrive at a result, they must be able to connect the result to the problem context and reflect 
critically on their work (cf. NCTM, 2000; Schoenfeld, 2004).  

RC5: Explain and justify reasoning. Explanation and justification are critical not only in 
algebra, but in mathematics in general (CCSS-M, 2010; NCTM, 2000). In order to support their 
solutions, students should be able to use general reasoning as well as justifications grounded 
specifically in the domain of algebra (cf. Yackel, 2001). Explanation can also be seen as a pre-
cursor to mathematical proof, the crux of higher-level mathematics (cf. Graham, Cuoco, & 
Zimmerman, 2010).  

Table 1 provides a brief summary of how the RCs were operationalized for scoring student 
work and observing algebra instruction. 

 
Table 1 
Conceptualization of Robustness Criteria in Student Assessments and Classroom Observation 

Robustness Criterion Examples of Operationalizing the RCs 
 Students’ Written Work Classroom Events 
RC 1 – Interpreting text, 
understanding context 

Use of appropriate units and terms 
(both contextual and mathematical)  

Definition or rewording of 
nonmathematical and technical 
terms 
 
Elaboration on context  
 
Attention to embedded mathematical 
situation 

RC 2a – Identifying salient 
quantities 

Correct choice of quantities to 
include in representations  
 
Correct choice of quantities in 
subparts of tasks 

Identifying quantities in givens and 
required solution 
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RC 2b – Articulating relationships 
between quantities 

Statements about relationships 
between quantities in explanations 
(e.g. as the size number increases, 
the number of people increases by 4) 

Considering how one variable 
changes with another 
 
Identifying features of families of 
functions 

RC 3a – Generating representations Solicited generation of 
representation 
 
Spontaneous generation of 
representation as part of solution 
strategy  

Teacher or students generating 
diagrams, tables, graphs, and/or 
variable equations 
 

RC 3b – Interpreting and connecting 
representations 

Drawing information from a 
representation to solve a problem 
 
Use of one representation to 
generate another 
 
Use of representation in explanation 
of solution 

Explication of global features of 
representations (e.g. slope of a 
curve)  
 
Making connections between 
representations 
 
Discussing affordances of different 
representations 

RC 4a – Calculations and procedures 
with precision 

Accurate execution of calculations 
and algebraic procedures (e.g., 
solving linear equations) 

Accurate execution of calculations 
and algebraic procedures (e.g., 
solving linear equations) 

RC 4b – Checking plausibility of 
results 

Attention to problem context when 
explaining and justifying solutions 

Actively checking solutions with 
regard to context 

RC 5 – Explaining and Justifying 
reasoning 

Responses to questions asking why, 
how you know your solution is 
correct, or to explain your solution 
as if to a classmate 

Explicit guidance about what to 
include in an algebraic explanation 
 
Explicit requests for explanation and 
justification 

 
These robustness criteria are meant to capture the proficiencies students should have to 

be successful in solving contextual algebraic tasks, but do not necessarily represent a linear 
sequence of steps. Rather, the RCs represent integrated understandings that can be drawn on 
when interpreting and mathematizing algebraic situations. The data and analysis below 
demonstrate how the RCs were used to guide data collection on algebra learning and provide a 
fine-grained analysis of student work. 
 

Method 
 

 The larger study is a mixed methods development project involving assessment, scoring, 
and observational tools to connect gains in student understanding with observations of classroom 
teaching practices. The assessments consist of free-response tasks adapted from MARS and 
multiple-choice items released from the Massachusetts Comprehensive Assessment System 
(available http://www.doe.mass.edu/mcas). These tasks were chosen to represent more familiar 
and policy-important tasks from standardized tests, as well as tasks providing opportunities for 
open-ended problem solving. We slightly modified the open-ended tasks to increase 
opportunities for students to show evidence of each of the robustness criteria. In this section, we 
briefly describe the data collection, then describe in more detail the validity and reliability of the 
measures.  
Data Collection 
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  We collected data from nine 8th-grade algebra classrooms. The data consist of a pre-test 
administered in the fall, seven to ten classroom observations, and post-tests administered in early 
spring. The pre- and post-tests consisted of five multiple choice items and three open-ended 
MARS tasks.  We scored all the tasks using the rubrics based on the robustness criteria and 
generated class profiles by averaging students' overall and RC scores across each class.   

The tasks were scored in two ways: (a) an overall score based on correctness of student 
responses (similar to the score provided by the MARS rubrics), and (b) individual scores for each 
RC, providing a more fine-grained view of students’ developing understandings. The RC scores 
represent an accumulation of students’ use of particular strategies to solve each subtask, their 
correct answers to specific parts of the task, and resources drawn on to explain and justify their 
solutions. Table 2 provides a sample rubric for the linear pattern task shown in Figure 1. 

 
Arranging Tables 

A company supplies tables for business meetings.  
Each table is a rectangle, and can seat one person on its short edge, and  
two people on its long edge, like the figures on the right.  
 
The diagrams below show how these tables can be made into arrangements for different numbers 
of people.  The different arrangements are numbered, like the figures below. 
No one sits inside the arrangements of tables.  
 

 
(1) How many people can sit at a Size 3 arrangement?  
 
(2) How many people can sit around a Size 13 arrangement?  Explain how you know your 
answer is correct. 
 
(3) Write an equation for the number of people p who can sit at a Size S arrangement. Explain 
how the parts of your equation relate to the table arrangements.  
 
 (4) James is trying to seat 75 people.  What size arrangement will he need?  Write an 
explanation that would convince a classmate your answer is correct.  
 
Figure 1.  Sample of linear pattern CAT. 
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Table 2 
Rubric for Arranging Tables 

Task 
Subpart 

Description (points available) Associated 
RCs 

Possible Strategies Associated 
RCs 

Part 1 Find next term in pattern (1) 3b   
Part 2 Find 13th term in pattern (1)  Generates representation – 

table, graph, or equation 
3a, 4a 

   Generates representation - 
diagram 

3a, 4b 

   Generates pairs of numbers 4a 
 Explains solution (1) 5 Articulates (in words) 

relationship between size 
number and number of 
people 

2b 

   Draws on representation 3b 
   Draws on problem context 4b 

Part 3 Write variable equation (2 – 
partial credit available)  

2a, 3a, 3b Generates a representation  3a 

 Explanation (1) 5 Articulates (in words) 
relationship between size 
number and number of 
people 

2b 

   Draws on representation 3b 
   Draws on context 4b 

Part 4 Determine an error in pattern 
generation (1) 

1, 2a Solves equation from Part 3 4a 

   Generates table or diagram 3a, 4a 
   Generates pairs of numbers 4a 
 Explanation 5   
   Draws on a representation 3b 
   References relationship 

between size and number of 
people, explains remainder 

2b, 4b 

 
Validity 
 To be valid, our assessments needed to cover appropriate algebra content that accurately 
captures their competencies along the RC dimensions. Also, we needed scoring rubrics that 
provided appropriate information on students’ robust understanding of algebra. Thus, we 
completed several stages of validity checks on both the tasks and the rubrics. 

Content validity of tasks. To ensure content validity on the open-ended tasks, we largely 
kept the tasks in their original form since they represent well-established assessments of 
students’ ability to solve non-routine problems, explain their reasoning, and show evidence of 
high level thinking (http://www.noycefdn.org/svmi.php). We made only slight adaptations from 
the MARS versions to provide more opportunities for students to explain their reasoning and 
change some language in the contexts to be more appropriate for students in the United States. 
Pattern tasks and real-world linear tasks were chosen based on pilot studies conducted during the 
first two years of the study, through which we found that students generally provided more 
written work on these types of tasks. We also conducted think-aloud interviews in year 1, and 
post-hoc interviews with randomly selected students in year 2. We found that the interviews did 
not afford significantly more or different information about students’ understanding than their 
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written work on the assessment, so we considered the tests to be valid measures of how students 
demonstrated their algebraic understanding on these types of tasks. 

Validity of scoring rubrics. To test the validity of our rubrics, which consisted of both 
an “overall correctness” score as well as scores for individual RCs, we compared the scores 
acquired using the ATS rubrics to scores obtained using existing MARS rubrics and more 
holistic scores for twenty student assessments from four classes. Holistic scoring involved 
analyzing students’ overall performance on a task and making a general judgment about their 
robust algebraic understanding.  We considered this rating to be the “gold standard” for scoring 
student work because it represented the scorers’ collective understanding of what it meant to 
show evidence of robust understanding, and sought to compare other scoring techniques with 
holistic scores. To score holistically, we used a three-point scale (low, medium, high levels of 
algebraic understanding) to assign scores for students’ algebraic competency for the entire task 
as well as more fine-grained scores for each RC across two tasks. Results from the ATS and 
MARS rubrics for the students’ overall scores were moderately correlated (r = 0.552 and r = 
0.904 for the two tasks). Results from the ATS rubrics and overall holistic scores were more 
highly correlated (r values ranged from 0.694 to 0.764 for two scorers over two tasks). 

Following this analysis, we concluded that the ATS rubrics were closely aligned with our 
holistic perception of student understanding and were a reasonable way to track evidence of 
students’ possession of specific aspects of robust algebraic understanding.  Even so, we made 
slight revisions to the rubrics with three goals in mind.  First, we reconsidered which RCs were 
being assessed in each part of each task.  Secondly, we ensured that the RCs being captured, 
strategies that may be used, and wording in the rubrics were consistent for matched pairs of tasks 
on the two forms of the assessments.  For example, the Arranging Tables and Hexagons tasks are 
a matched pair, so we modified their rubrics as needed so that the same strategies were captured, 
matched to the same RCs, and so on.  We also allowed for partial credit as necessary to better 
align with the MARS rubrics.  Finally, we added a holistic scoring rubric on a binary scale for 
RC 1 at the end of each task.  This was because it seemed like the most reasonable way to 
capture whether students had navigated the language of the task.  

After the rubric revisions, we conducted a second round of validity testing similar to that 
described above where we compared individual RC scores provided through use of ATS rubrics 
to the results of holistic analysis.  The correlations between individual scorers’ holistic and ATS 
scores were significantly high. These are summarized in Table 3 below. 

 
Table 3 
Correlations Between ATS Rubric and Holistic Scores 

 Overall RC 1 RC 2a RC 2b RC 3a RC 3b RC 4a RC 5 

Scorer 1 0.900 0.640 0.732 0.670 0.765 0.432 0.568 0.776 

Scorer 2 0.858 0.712 0.671 0.790 0.702 0.536 0.686 0.851 

Again, most correlations were moderately high or high. However, there were differences across 
the RCs. Certain RCs (e.g., RCs 3b and 4b) were particularly problematic. These problematic 
correlations led to further revision of the scoring rubrics and refinement of the tasks in order to 
better reflect these RCs in future phases of development.  

 
Reliability 
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During the development of our scoring rubrics and scoring guide, we also tested for 
reliability.  Reliability was tested in two ways.  First, we selected assessments to determine how 
well six additional scorers performed against benchmark scores.  Second, once all the 
assessments were scored, we double scored 10% (n = 12) of the assessments to see how well the 
scores from the two raters aligned.  The results of this testing along with our validity testing 
provided feedback on how to revise the scoring guide accordingly.  The following sections 
provide more detail of these processes. 

Benchmark scoring and reliability among scorers.  For the benchmark scoring, two 
expert scorers scored and reached full agreement on the scores of twelve tests. These scores 
served as the benchmark scores used as comparison for the other six scorers’ results. Once the 
assessments were scored, we compared scores using the Intraclass Correlation Coefficient to 
measure the absolute agreement between each rater and the benchmark (See Table 4).  We chose 
to use the Intraclass Correlation Coefficient because unlike the Pearson coefficient, it accounts 
for agreements between every score and not just the linear relationship between scores. In most 
cases, the agreement between each scorer and the benchmarks was acceptable, but RC1 and RC5 
had varied results among the scorers, with some correlations below 0.7. These results allowed for 
further discussions on the clarity of RC1 and RC5. Some modifications were made to the scoring 
guidelines specific to these robustness criteria.  
 
Table 4 
Results of Intraclass Correlation Between Six Scorers and Benchmark Scores 

 Intra-class Correlations 
 Overall Score RC 1 RC 2a RC 2b RC 3a RC 3b RC 4a RC 4b RC 5 

Scorer 1 0.986 0.681 0.971 0.938 0.987 0.987 0.959 0.687 0 
Scorer 2 0.933 0.501 0.928 0.946 0.891 0.798 0.893 0.927 0.889 
Scorer 3 0.966 -0.667 0.967 0.888 0.915 0.976 0.931 0.796 0.894 
Scorer 4 0.922 0.727 0.932 0.783 0.790 0.907 0.739 0.934 0.615 
Scorer 5 0.953 0.793 0.902 0.879 0.921 0.924 0.906 0.807 0.634 
Scorer 6 0.979 1 0.957 0.903 0.956 0.979 0.947 0.941 -0.296 

Note. Values above 0.72 are considered acceptable.     
  
Double-scoring results. Eighteen tests (nine from each form of the assessment) were 

randomly selected and assigned to eight raters. Two scorers independently scored each test. 
Then, we randomly assigned the two scores for each test as the scores of Rater 1 and Rater 2 
score respectively, and calculated the Pearson correlation between the two representative scorers 
(shown in Table 5) for the correctness score, each RC score, and the overall score. All the 
Pearson Correlation Coefficients are calculated at one-tail to achieve higher precision on the 
basis that we have a priori knowledge that the scores would be positively correlated. 
 
Table 5 
Correlations Between Scorer 1 and Scorer 2 

  
Total 
Correct RC1 RC2a RC2b RC3a RC3b RC4a RC4b RC5 Overall 

Form A 0.997 0.701 0.975 0.972 0.608 0.970 0.909 0.955 0.877 0.978 
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Form B 0.924 0.783 0.885 0.944 0.891 0.920 0.800 0.496 0.326 0.822 

 
The correlations for RC 3a on Form A and RCs 4b and 5 on Form B were moderately low, which 
indicate inconsistency between raters. The low correlation coefficients for both RC 4b (0.496) 
and RC 5 (0.326) on Form B were mainly caused by large discrepancies between two raters’ 
scoring of a single students’ test. Overall, we concluded that the scoring rubrics are acceptably 
reliable and that these issues with the problematic test were minor. First, this kind of discrepancy 
only occurred for one of the sample tests. We decided to annotate the problematic test as a 
boundary example for future reference. Second, we assigned the scorers randomly, evenly 
distributing the scoring of all the tests from each class among the scorers. Also, we analyzed 
results based on class-level averages, not by selecting individual assessments for analysis like we 
did in this reliability checking. Thus, the reliability of the results will be substantially higher than 
in the reliability tests. For instance, correlation of the overall scores between the two raters on 
both forms, as seen in Table 5, indicates high reliability for overall assessment scores.  For this 
report, we share illustrative results from four representative classrooms. 
 

Results 
 
In this study, we sought to identify components of robust algebraic understanding (RCs), 

describe the tools we used to capture students’ possession of these competencies and measure 
growth, and consider class profiles resulting from analysis of student learning associated with 
each RC. It is not our intent to present conclusive evidence of student learning in participating 
classrooms; relatively low n-values prevent statistical significance of these results. Rather, in this 
section we provide results from students' pre- and post-assessments, providing summative results 
as well as how classrooms performed by each RC. Our purpose is to illustrate the kind of results 
possible with these instruments. In particular, we emphasize how students can make greater 
gains in some RCs than others, which will ultimately allow for more detailed and specific links 
to classroom instruction. 
 
Summative Scores by Class	   

Summative results include changes in students' overall scores and multiple choice and 
open-ended task subtotals. Table 6 provides class average scores on the assessments for each 
measure. All classes showed increases in multiple choice scores, but differences exist in patterns 
of change. Students in Class A improved most from their pre-assessment scores on the multiple 
choice items. This trend did not carry through to the summative scores on the open-ended items, 
however, where the average student score showed only slight improvement. Conversely, students 
in Class C had the greatest improvement (10% increase in scores) on open-ended items, while 
students in Class B showed a slight decline.  Figure 2 highlights these changes. To find change in 
percents, we tood the pre-test and post-test averages, then fount the difference.  

 
Table 6 
Class Average Overall and RC Scores  
 Class A Class B Class C Class D 
 Pre Post Pre Post Pre Post Pre Post 
Overall 
Correct 0.228 0.263 0.324 0.336 0.236 0.332 0.224 0.273 
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Mult Choice 0.336 0.509 0.541 0.588 0.482 0.565 0.369 0.446 
Open-ended 0.136 0.164 0.239 0.235 0.140 0.239 0.168 0.205 
RC 1 0.439 0.485 0.490 0.569 0.392 0.549 0.462 0.500 
RC 2a 0.148 0.195 0.231 0.295 0.125 0.242 0.163 0.162 
RC 2b 0.166 0.190 0.175 0.195 0.144 0.247 0.148 0.223 
RC 3a 0.084 0.134 0.146 0.178 0.137 0.216 0.083 0.129 
RC 3b 0.220 0.252 0.286 0.274 0.195 0.289 0.196 0.246 
RC 4a 0.075 0.101 0.147 0.165 0.137 0.186 0.115 0.132 
RC 4b 0.107 0.120 0.174 0.136 0.102 0.179 0.112 0.143 
RC 5 0.115 0.130 0.199 0.196 0.171 0.236 0.115 0.220 
 
These scores provide some insights into student growth (or decline) in performance on 
contextual algebraic tasks. Yet, we desired a more fine-grained picture of student understanding:  
did students show greater gains in certain RCs, which would allow for links to and focused 
analysis of instruction in their classrooms?  
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Figure 2. Comparison of the change in percent of summative scores for each class. 
 
RC Scores by Class 

To better understand changes in summative scores and provide more fine-grained class-
level profiles of student understanding, we analyzed how scores changed for each RC by 
calculating the differences between pre- and post-test scores along each RC dimension (see 
Figure 3).  
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Figure 3. Comparison of the change in percent of RC scores by class. 
 
 This level of analysis provided a more detailed look at student learning, though in this 
sample gains in individual RCs were small. We can see, for example, that the increase in open-
ended task scores for Class C is distributed across many of the RCs. In particular, students’ 
performance in identifying relevant quantities and the relationship between them (RC2), 
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construct, interpret and connect algebraic models (RC3), and check solutions in the context of 
the problem (RC 4b) showed substantially growth than in other classes.    

Although it is useful to separate the RCs for analytical purposes, the RCs likely develop 
simultaneously in practice. In particular, the 15% increase in RC1 is likely related to the growth 
in RCs 2 and 3. This is because building situation models of problems requires interpreting 
language (RC1), identifying the relationships between quantities (RC2), and representing them 
mathematically (RC3).  
 Determining overall changes in student performance on the assessments, especially in 
open-ended tasks, provides some information about strengths and weaknesses in student 
understanding. Nevertheless, examining areas of growth at a finer level provides a detailed 
profile of students’ robust understanding at the classroom level.  The development of our rubrics 
allowed us to gather this detailed information efficiently and to identify what resources students 
are drawing from to solve the tasks.  In turn, this may allow us to make stronger links to 
instructional moves that promote students' proficiency at solving open-ended contextual tasks. 
   

Scholarly Significance 
  
 This method of analysis, in the context of a larger study connecting classroom practices 
with student performance, allows us to unpack the development of student understanding at a 
relatively fine grain size.  Frequently, large-scale studies measure changes in student 
understanding by computing the average number of correct responses. Our work measures 
changes in students' strategies that demonstrate underlying algebraic competencies.   By 
disaggregating student work by RCs, rather than a more typical focus on problem type (e.g. 
systems of equations in two variables), this analysis provides class-level profiles of change in 
students’ use of algebraic representations, their interpretation of problems, and the quality of 
mathematical justification in their explanations. This approach will indicate which aspects of 
student understanding are developing, rather than which types of problems they can solve, and 
can point to instructional practices that may foster students’ development of those underlying 
competencies.  
 Our analyses may have a larger implication for research. For instance, as many states 
adopt the Common Core State Standards in Mathematics, student success will be measured by 
students’ demonstration of mathematical practices in addition to their content-specific skills. 
Research on the teaching practices that support the development of these practices, closely 
aligned with the underlying proficiencies represented by the robustness criteria, is essential to 
support teachers in enabling all students to meet these standards (Shaughnessy, 2011). New 
assessments will include open-ended tasks similar to the tasks used in this study (see, e.g., 
Smarter Balanced Assessment, 2012). Our technique for analysis of student performance on 
these tasks using the robustness criteria provides detailed information on what aspects of 
algebraic understanding students are developing in problem solving and where they continue to 
struggle.  
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