TRANSITIONING FROM EXECUTING PROCEDURES TO ROBUST UNDERSTANDING OF ALGEBRA

PME-NA November 2nd, 2012

Algebra Teaching Study
Michigan State University and UC-Berkeley California.
NSF DRL-0909851, 0909815

Rachel Ayieko, Jamie Wernet, Sihua Hu, Jerilynn Lepak, Daniel Reinholz, Robert Floden
Algebra Teaching Study Goals

• Overall aim is to provide research tools
 ○ Student assessment
 ○ Classroom observation scheme

• Focus: Robust understanding for contextual problems in algebra

• Better understanding of connections between classroom instruction and students’ robust understanding
Development of Tools

Student Assessments

• Selected and revised tasks from the Mathematics Assessment Resource Service (MARS, http://www.noycefdn.org/resources.php)

• Constructed assessments
 • Five multiple choice questions
 • Three open-ended contextual tasks

• Developed scoring rubrics to capture detailed student competencies

Observation Scheme

• Teaching for Robust Understanding of Mathematics (TRU MATH)

• Developed iteratively over four years (still in progress) by watching classroom video, and identifying promising classroom practices

• Two parts
 • Five Dimensions
 • Algebra-specific practices
Robustness Criteria for Algebraic Understanding (RCs)

RC1: Reading and interpreting text; understanding context

RC2: Identifying salient quantities and relationships between them

RC3: Algebraic representations of relationships between quantities

RC4: Executing calculations and algebraic procedures

RC5: Explaining and justifying reasoning

- 2a. Identify relevant quantities
- 2b. Articulate relationships between quantities
- 3a. Generate representations
- 3b. Interpret and connect representations
- 4a. Execute calculations and procedures with precision
- 4b. Check plausibility of results
Capturing RC 3 in Sample Student Work

(1) How many people can sit at a Size 3 arrangement?

20 people

(2) How many people can sit around a Size 13 arrangement? Explain how you know your answer is correct.

(3) Write an equation for the number of people \(p \) who can sit at a Size \(S \) arrangement. Explain how the parts of your equation relate to the table arrangements.

\[p = S + t \]

This has to do with the number of people that can sit at the tables.

(4) Find the perimeter of her arrangement of 4 tiles.

18 inches

(2) What is the perimeter of a row of 10 tiles? How do you know this is the correct perimeter for 10 tiles?

42 inches. I know this because the perimeter is the number of sides of 6 \(\times \) \((n \times 6) \times 2 \)

10 \(\times \) 6 \(- \) 9 \(\times \) 2

60 \(- \) 18 \(= \) 42

(3) Write an equation for the perimeter \(p \) of a row of hexagonal tiles that works for any number of tiles, \(n \), in the row. Explain how the parts of your equation relate to the hexagon patterns on the first page.

\[p = n \times 6 \times (n - 1) \times 2 \]

\(\uparrow \)

6 sides to the hexagon

\(\uparrow \)

Taking away the sides that are connected together.
<table>
<thead>
<tr>
<th>RC 3 Rubrics from Scheme</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC 3a</td>
<td>Generating representations of relationships between quantities</td>
<td>Generated by way of practice</td>
<td>Purposefully generated with explicit attention to the relationship between variables</td>
</tr>
<tr>
<td>RC 3b</td>
<td>Interpreting and making connections between representations</td>
<td>Representations are interpreted locally or in part. No connections between multiple representations.</td>
<td>Global features of representations are explicited to highlight the covariation between quantities</td>
</tr>
</tbody>
</table>
Tracking Changes in Student Scores Across Four Classrooms

Mean Score Change

<table>
<thead>
<tr>
<th>Classrooms</th>
<th>Percentage change</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC3achange</td>
<td>RC3bchange</td>
</tr>
<tr>
<td>Totalchange</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2%</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>4</td>
<td>6%</td>
</tr>
</tbody>
</table>

Classrooms 1, 2, 3, and 4 show mean score changes of -2%, 0%, 2%, and 6% respectively. The chart indicates a significant increase in scores for Classroom 4 compared to the other classrooms.
Tracking Classroom Practices

RCs Total time

- **Teacher_Observation**

- **Percentage of Total Time**

- **Legend**:
 - RC1
 - RC2
 - RC3a
 - RC3b
 - RC4a
 - RC4b
 - RC5a
 - RC5b
 - RC5c
Tracking Generation and Interpretation of Algebraic Representations

RC3 Total Time

- **Teacher_Observation**
 - T1-OB_A
 - T1-OB_B
 - T1-OB_C
 - T2-OB_A
 - T2-OB_B
 - T2-OB_C
 - T3-OB_A
 - T3-OB_B
 - T3-OB_C
 - T4-OB_A
 - T4-OB_B
 - T4-OB_C

- **Percentage of Total time**
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25
 - 30

- **RC3a**
- **RC3b**
Discussion

The tools in development can be used to:

- Track how often a class addresses RC-related proficiencies in a lesson and across lessons, and the nature of that attention.

- Measure student understanding of a detailed set of skills and competencies.

- Begin to highlight differences in teachers’ use of instructional practices and students’ robust understanding of algebra across classrooms.

The development of tools that can link student learning to classroom practices is an important step in identifying effective practices that lead to robust understanding of mathematics.
Thank you!

- Rachel Ayieko - ayiekora@msu.edu
- Jamie Wernet - wernet@msu.edu
- Jerilyn Lepak - jrlepak@gmail.com
- Sihua Hu - husihua@msu.edu
- Daniel Reinholz – reinholz@berkeley.edu

Please visit our two project posters (one on the scoring rubrics and one on the scheme) later today!